Magnetic Resonance Force Microscopy and the Solid State Quantum Computer

نویسندگان

  • D. V. Pelekhov
  • I. Martin
  • A. Suter
  • D. W. Reagor
  • P. C. Hammel
چکیده

A Quantum Computer (QC) is a device that utilizes the principles of Quantum Mechanics to perform computations. Such a machine would be capable of accomplishing tasks not achievable by means of any conventional digital computer, for instance factoring large numbers. Currently it appears that the QC architecture based on an array of spin quantum bits (qubits) embedded in a solid-state matrix is one of the most promising approaches to fabrication of a scalable QC. However, the fabrication and operation of a Solid State Quantum Computer (SSQC) presents very formidable challenges; primary amongst these are: (1) the characterization and control of the fabrication process of the device during its construction and (2) the readout of the computational result. Magnetic Resonance Force Microscopy (MRFM)—a novel scanning probe technique based on mechanical detection of magnetic resonance–provides an attractive means of addressing these requirements. The sensitivity of the MRFM significantly exceeds that of conventional magnetic resonance measurement methods, and it has the potential for single electron spin detection. Moreover, the MRFM is capable of true 3D subsurface imaging. These features will make MRFM an invaluable tool for the implementation of a spin-based QC. Here we present the general principles of MRFM operation, the current status of its development and indicate future directions for its improvement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ua nt - p h / 99 09 03 3 v 1 9 S ep 1 99 9 Solid - State Nuclear Spin Quantum Computer Based on Magnetic Resonance Force Microscopy

We propose a nuclear spin quantum computer based on magnetic resonance force mi-croscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essetial requirements for quantum computation in solids: (a) preparation of the ground state, (b) one-and two-qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at tem...

متن کامل

Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy

We propose a nuclear-spin quantum computer based on magnetic resonance force microscopy ~MRFM!. It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: ~a! preparation of the ground state, ~b! oneand two-qubit quantum logic gates, and ~c! a measurement of the final state. The proposed quantum computer can operate at temp...

متن کامل

All-silicon quantum computer.

A solid-state implementation of a quantum computer composed entirely of silicon is proposed. Qubits are 29Si nuclear spins arranged as chains in a 28Si (spin-0) matrix with Larmor frequencies separated by a large magnetic field gradient. No impurity dopants or electrical contacts are needed. Initialization is accomplished by optical pumping, algorithmic cooling, and pseudo-pure state techniques...

متن کامل

ar X iv : q ua nt - p h / 01 09 03 9 v 1 7 S ep 2 00 1 An all silicon quantum computer

A solid-state implementation of a quantum computer composed entirely of silicon is proposed. Qubits are Si nuclear spins arranged as chains in a Si (spin-0) matrix with Larmor frequencies separated by a large magnetic field gradient. No impurity dopants or electrical contacts are needed. Initialization is accomplished by optical pumping, algorithmic cooling, and pseudo-pure state techniques. Ma...

متن کامل

A Magnetic Resonance Force Microscopy Quantum Computer with Tellurium Donors in Silicon

We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines the well-developed silicon technology with expected advances in MRFM. PACS: 03.67.Lx, 03.67.-a, 76.60.-k

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001